Evolution and cell physiology. 3. Using Dictyostelium discoideum to investigate mechanisms of epithelial polarity.

نویسندگان

  • William I Weis
  • W James Nelson
  • Daniel J Dickinson
چکیده

In Metazoa, a polarized epithelium forms a single-cell-layered barrier that separates the outside from the inside of the organism. In tubular epithelia, the apical side of the cell is constricted relative to the basal side, forming a wedge-shaped cell that can pack into a tube. Apical constriction is mediated by actomyosin activity. In higher animals, apical actomyosin is connected between cells by specialized cell-cell junctions that contain a classical cadherin, the Wnt signaling protein β-catenin, and the actin-binding protein α-catenin. The molecular mechanisms that lead to selective accumulation of myosin at the apical surface of cells are poorly understood. We found that the nonmetazoan Dictyostelium discoideum forms a polarized epithelium that surrounds the stalk tube at the tip of the multicellular fruiting body. Although D. discoideum lacks a cadherin homolog, it expresses homologs of β- and α-catenin. Both catenins are essential for formation of the tip epithelium, polarized protein secretion, and proper multicellular morphogenesis. Myosin localizes apically in tip epithelial cells, and it appears that constriction of this epithelial tube is required for proper morphogenesis. Localization of myosin II is controlled by the protein IQGAP1 and its binding partners cortexillins I and II, which function downstream of α- and β-catenin to exclude myosin from the basolateral cortex and promote apical accumulation of myosin. These studies show that the function of catenins in cell polarity predates the evolution of Wnt signaling and classical cadherins, and that apical localization of myosin is a morphogenetic mechanism conserved from nonmetazoans to vertebrates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A developmentally regulated Na-H exchanger in Dictyostelium discoideum is necessary for cell polarity during chemotaxis

Increased intracellular H(+) efflux is speculated to be an evolutionarily conserved mechanism necessary for rapid assembly of cytoskeletal filaments and for morphological polarity during cell motility. In Dictyostelium discoideum, increased intracellular pH through undefined transport mechanisms plays a key role in directed cell movement. We report that a developmentally regulated Na-H exchange...

متن کامل

α-catenin and IQGAP regulate myosin localization to control epithelial tube morphogenesis in Dictyostelium.

Apical actomyosin activity in animal epithelial cells influences tissue morphology and drives morphogenetic movements during development. The molecular mechanisms leading to myosin II accumulation at the apical membrane and its exclusion from other membranes are poorly understood. We show that in the nonmetazoan Dictyostelium discoideum, myosin II localizes apically in tip epithelial cells that...

متن کامل

The signaling mechanisms underlying cell polarity and chemotaxis.

Chemotaxis--the directed movement of cells in a gradient of chemoattractant--is essential for neutrophils to crawl to sites of inflammation and infection and for Dictyostelium discoideum (D. discoideum) to aggregate during morphogenesis. Chemoattractant-induced activation of spatially localized cellular signals causes cells to polarize and move toward the highest concentration of the chemoattra...

متن کامل

Growth of the Cellular Slime Mold, Dictyostelium discoideum, Is Gravity Dependent.

The effect of artificial gravity on the growth of a microorganism, Dictyostelium discoideum, was studied and the following results were obtained: (a) Germination efficiency increased as gravity increased up to 3 gravities. (b) Cell differentiation was influenced by gravity. Retardation of spore formation or reduction in the spore fraction was observed at hypergravity. (c) Fruiting bodies were t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 305 11  شماره 

صفحات  -

تاریخ انتشار 2013